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How closely can a solid approach an air-water surface without becoming wet?
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Through a study of the van der Waals interaction between a solid and an air-water interface, we investigate
the practical and fundamental problem of the limiting height at which an object can approach a free surface. A
numerical study of the interface shape reveals dependencies governed by two disparate length scales associated
with the relative strengths of the van der Waals and bouyancy forces, to surface tension. A study of the limits
of solvability of the governing equation has led to the principal result: a closed-form expression for the
absolute limiting height to which an object can be lowered to the air-water interface. The formula depends
explicitly and only on the Hamaker constant of the van der Waals force and the geometry of the solid.
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Imagine a child playing beside a pool of water, testing to  For simplicity the solid body considered is a cylindrical
see how close he can place his finger to the water surface. Hgraboloid whose profile in vertical cross-section is de-
is instinctively aware that he cannot come too close, for thescribed by the functiorzp(r)zzpoﬂ\r,z). The valuez,, de-
surface will spontaneously jump to meet his approaching finnotes the lowest-most point of the paraboloid cylinder, while
ger. In laboratory studies, researchers use the sensitive Wilhe shape of the body is governed by 8may parameten,
helmy plate technique to measure surface properties of thg,=r,(r) wherer is the sole independent coordinate vari-
pure air-water interface, or properties of an air-water interable. Typicalz,, values of relevance are of the order of a few
face containing a precise selection of surface active molhundred to a few thousand nanometers, approximately
eculeq 1,2]. The experiment involves the edge-on immersion10 000—100 000 times smaller than the horizontal scale. By
of a metal plate, suspended by a fine wire from a forcevarying A, which plays a central role in the forthcoming
sensor, into the water. In doing so, the researcher noticeanalysis, we can effectively model any shape of parabolic
that no matter how slowly and carefully she lowers the platesolid from a planar interfacé.—0) to a vertical line(A—).
toward the water surface, it does not meet a placid horizontalhe larger the value of, the sharper or more needlelike the
surface. solid is.

In both instances the water surface does not remain flat The van der Waals surface energy,
during the object’'s descent. Instead, being fluid and hence
deformable, the interface responds to the presence of a solid A
body. Invariably, the water surface becomes subject to an a(r,z(r),zy(r))=— 2’ @)

_ ‘ Uk 2D(r,z(r),zp(r))

induced stress-a-surface forceln the given solid-air-water

system, the imposed stress, a van der Waals interaction, fgsulting from a summation of intermolecular interactions
attractive depending explicitly on a parame#ercalled the  depends explicitly on the locations of both surfaces through
Hamaker constant, and the locations of the two surfaces. Thge distance functiorD(r,z(r),z,(r)), connecting points
van der Waals attraction causes the water surface to bulge th the two surfaces by the shortest line segnise¢ Fig. 1

the direction of the solid. The extent to which it bulges de-The Hamaker constar is a measure of the strength of
pends on separation. A limiting, stable bulge correspondinghe intermolecular interactions, and thus a function of
to a limiting approach distance is inevitable. the three materials involvefd]. In all o is a function of

Appearing now for the first time, to our knowledge, arethe paraboloid shape and material properties, ie.,
explicit formulas for the limiting height a solid can be low- =0 (r,z(r);A,zy0,\). With the fluid media presumed of in-
ered toward the air-water surface. Exact calculations of lim{inite depth, the complication of involving similar interac-

iting stable water surface profiles are summarized in simplgions between either the fluid surface or the paraboloid and
formulas involving elementary functions. The formulas arean underlying solid substrafé] can be avoided.
applicable to a wide range of macroscopic objects and can be The shape of the water surface,z(r)), is determined
utilized by experimentalists and laymen alike. These resultgia an Euler-Lagrange minimization of the total free energy
are based on accepted approaches already adopted in relagffitthe systen{11,8]. The Euler-Lagrange equation satisfied
studies[3-8]. by z(r) is [8]

To understand what happens at and to the water surface as
a solid is lowered toward the interface, we perform a theo- d [rz,(r)
retical study by modeling the object as a smooth body of gy W[VJ”T(“Z’ZP)] =TW(r)oy(r,z,zp) +rGz(r).
cylindrical symmetry. Specifically, the solid is represented by 2)
a cylindrical coordinate paifr,z,(r)) wherez, is a smooth _ o . _ .
function. The corresponding air-water interface is repre-Here, partial derivatives with respect to independent vari-
sented by the coordinate pdir,z(r)), in which the function ablesr andz are denoted by subscripd/(r) = \/1+z,2 is an
z=2(r) must be determined. area scaling factor; an@= Apg is the product of the density
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2.0x10° change in the surface elevation is only of the order of hun-
dreds to at most thousands of nanometers. The prolonged
U , influence on the profile follows the asymptotic behavior of
1.5x10° (1) = ZygtArp the solution to Eq(2),
@ /1
*;%11 1.0x10° z(r)~CM as r—om, 3
= D(r) Jr
B 1 2()
5.0x107 4 valid far from the region of closest approach of the solid. The
""""""""""" / rate at which the surface deformation diminishes depends on
0.0 the decay lengtHg which, for the air-water interface, is
— ~0.27 cm. Consequently, a plane air-water interface whose
-1.0x10? -5.0x10° 0.0 5.0x10° 1.0x10°

lateral extent exceeds I or more can in this context be
r (m) considered effectively infinite.
. . . A solution of Eg.(2) is, however, not always possible.
FIG. 1. Vertical cross section of a parabologh(r)=zp  Thjs fact plays a crucial role in determining how close an
FAr(r)” w:lere Zpo=1170 rf‘m vhile hSp'ay para”;_‘late_”‘ object can be placed to a water surface. If placed too close,
=0.1 m, and an air-water surface(r). The water profile is a nen certain conditions necessary to ensure a solution to Eq.
solution to Eq.(2). for a van der Waals interaction between the (2) will not be satisfied. The physical implication for an ob-
surfachilo]. Ifkl\ysucal_parameters a'z?"’:_zozo nm, splay param- ject too close to the water surface is that the water will pref-
eterA=0.1m ’, Ap=0.9969 gm/cri y=72.8 mN/m, and Ha- erably wet the solid. The solvability limit we speak of rep-
maker constanf=10"2° J. The figure also indicates the distance y ) y . P . P
. resents ambsolutelower bound for the distance at which the
function D(r,z(r),z,(r)). . .
solid can approach the air-water surface.

] ) o ) We have performed extensive numerical calculations of
difference between water and air, multiplied by the gravita-s |imit of solvability, translated into a minimum height

tional acceleration. The right-hand side of E2). contains a Zpomin 10 Which an object can be lowered toward a water

surface term associated with the induced van der Waals SUE rface Obviously, this minimum heigltyomin, is a func-
. ’ ,min>

face stress and a body force term arising from the gravitagyn, of both the Hamaker constaftand the paraboloid splay

tional contribution. These act in opposition. The former aCtSparameter)\ as well as the surface tension of wateand
to lift the water surface above its neutral positi@+0) and e gravitational force constai@. As focus here is on the

is countered by the latter force, which is proportional to thegj,_\yater interface, no functional dependence on either
relative mass of water raised. On the left-hand side of Bd. 5 can be deduced. In Fig. 2 we show examples of numeri-
appears a surface energy- o', which measures the surface’s ¢y getermined, minimum limiting values af,,. These
ability to reduce the extent of deformation. Singes nega-  ¢cyrves demonstrate quite a typical behavior as a function of
tive this ability is d|.m|n|shed compared _to the bare surfacegjiher splay parameter or Hamaker constant, respectively. In
measured by the air-water surface tensjon each of the figures in Fig. 2, we also show the corresponding
Two principal length scales appear in this problem: onenaximum height of the air-water interface which occurs at
associated with the relative strength of the gravitational forcgp,e apexz(0), i.e., directly under the paraboloid tip.
to surface tensiorlg= /G, the capillary length, and one, |t seems reasonable that as the solid becomes broader and
ly, a complex function o, X, as well as a length scale flatter (decreasing\) the limiting height of approacitand
associated with the relative strength of the van der Waalg,s limiting separation between solid and fluidcreases,
stress to surface tensioty=A/y. Not surprisingly, the since an increasing proportion of the solid comes within the
existence of these two length scales leads to profile shapegn der Waals range of influence of the water interface. Simi-
which differ in scale in the two orthogonal directions. larily, the dependence on Hamaker constant is as follows: the
Full numerical solution of the Euler-Lagrange equation,greater the strength of the interactigimcreasingA), the
Eq. (2), is achieved self-consistently and involves a matchinggreater the minimum limiting height to which the body can
of near- and far-field solutions. For details and complemencome to the surface. Naturally, the limiting value of the peak
tary results see Ref10]. in the air-water profilez(0), follows the trend in thez,g min
Solutions of Eq.(2) for a range of parameter values are yalues. Interestingly enough, there is a consistent factor of
typically represented by the profile in Fig. 1 which highlights apout 3 between corresponding limiting valueggf i, and
the disparity between the vertical scate|y, and the hori- 7). ’
zontal scaler-1g . The figure includes both a calculated air-  For the numerical data presented in Fig. 2, showing de-

water interface profilélower curve and the solid paraboloid pendence 0, min, ON \ for a fixed Hamaker constant, we
(upper curve responsible for the van der Waals surfacegptain a least équares fit of the form

force. A recurring feature of solutions to E@) is that de-

spite the local nature of the van der Waals stresd ) Zpomid \;A=2X10710 ) =10 m 4
the effect on the air-water interface extends some distance

away from the apex of the pin, although this would not nec-with  exponent  values B=—5.7306-0.2036 logg\
essarily be apparent to the naked eye as, in contrast, the0.0345(logoh)2. On the other hand, with regard to the
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_ _ ing with an infinite fluid surfacd3,5]. For A\>10 m * no
3000 Zomiline of best it v immediate numerical difficulty arises. However, numerical

calculations require a finer discretization of thevariable
with a consequent increase in computation time. In contrast,
no difficulty appears in the case of smaller valuesAof
While limits expected foA values are larger than those con-
sidered here, such are not typically found in practice.

From the assumption that the parameter dependence of
A Zyo,min is Of form (5) and by varying\ €[0.05,10, we have
ob_ deduced that

Zvaminv Z(O) (nm)

a=—6.4341-0.2379 logo\ — 0.023Glog; A2 (6)

to a relative accuracy of 0.1%, while a more complex depen-
dence on logy\ applies for the second exponent. To third
order we find the least-squares approximation

3000

N

o

o

o
T

w=0.3057+0.014 45 logo\ — 0.004 385log; o\ )?
—0.000 022 6log;o\ )3+ O((log; o0 )H) (7)

ZpO,minv Z(O) (nm)

=
o
o
o

o in which the O((log;o\)*) term is positive and non-
R h& - / negligible. Motivated by experience with a related system
z

involving a smaller density differencel0], we found that
Eq. (7) could be rewritten approximately as

0 100 200 300 400 500 600
A (102 J) w~0.305%[1—(3/10)log; o\ + (3/10)?(loggoh )2

3 3

FIG. 2. Critical limiting heightsz,q min (Open diamondsabove a —(3/10°(log; o\ )°+ - - - ][0.01445 logo\ — 1.3252
plane water surfacez&0) for a parabolic solid of cross section, %103 3
zp(r)=zpo+)\rp(r)2, as a function of splay paramet®r (upper 10""(logio)7] ®
figure) and Hamaker constat (lower figure. Solid triangles show
corresponding maximum heights of air-water interface. Solid curve

are least squares fits to thez,omin values:
— 10 5.7306-0.2036 logo\ — 0.0345(log\)?

in which we recognize the expression within the central pa-
Yentheses as the first few nontrivial terms of the binomial
(least it fign expansion for (#x) "1=37_,(—1)"x" for |x|<1. Antici-

and 7. —10- 64343, A03057 (leasfa:qjgrlge;t ! iolésgrerﬁé?m;e pating that successive terms continue to follow the binomial
Physigglmgarameter valuedp=0.9969 gm/crh, y’= 72.8 mN/rﬁ, series the implied summgtlon_ was performed to give, for
and fixed Hamaker constaat=2x 10~ 1J (upper figurg and fixed [logsoh|<10/3, the approximation

splay parametex=1 m™* (lower figure.

ZpO,min

logioh

dependence oA for fixed splay parameter, a least-squares 10+3log;oh
analysis gives a best fit of the form 9

p~0.3057+[0.1445- 1.3252¢ 10~ 4(logy o\ ) 2]

to the “exact” least-squares formula, E(f). Equation(9)
intrinsically possesses all orders of contributions of;adg

. and thus better represents thelependence.
wherea=—6.4343 andu=0.3057. These power-law fits are  |nyoking Eq.(6) in Eq. (5), with « given by Eq.(9), we

motivated by plots of the data on a log-log scale. Clearly, theyptain the convenient, closed-form formula
exponent in Eq(4) is specific to the value oA (andG and
v), while those in Eq(5) are specific to the given value if
(andG andvy). On the other hand, Eq&) and(5) represent
the same two-dimensional function Afand\ (for fixed G~ for the critical minimum height of a macroscopic object
and vy). To determine this function, values of bothand\  above the air-water interface. This formula depends only on
spanning two orders of magnitude or more were studiedthe type of material making up the soliflamaker constaht
Specifically, we considered the range of Hamaker constan@nd its geometrical curvatufsplay parameter

from 10°21J to 5x10 °J, and splay values\ from Formula (10) reproduces the numerically determined
0.05 m* to 10 m *. Values of\ less than 0.05 m* were  Zy min Values over the giveAN-parameter space to an accu-
difficult to implement. Foih <0.05 m * numerical problems racy of less than 2% relative error for the two lowastal-
arise because the paraboloid is too flat and an inherent syses:\=0.05 and 0.1 m*! and less than 0.5% relative error
tem instability predominates. In the limit—0 one has the for the remainder. The error decreases\ascreases up to
inherently unstable system of an infinite solid plane interactA =10 m L.

Zoomid AN =1 m™H)=10"A* m, (5)

ZpO,min: 10~ 6.434])\ —0.2379-0.0236 |Ogd\AM m (10)
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It is important to note that in Eq4)—(10) A andA must  tions in experiments quantifying the mesoscopic interaction
be normalized with respect to the reference scales between microscopic or submacroscopic solids and various
=1 m ! andA.;=1021J, respectively. Use of any other fluid surfaces[13—-22, an accurate representation requires
system of units will lead to error. The critical height ex- fitting of exact numerical calculations in the range
pressed by Eq.10) is given in meters. =100-10000 m'. Here, an accurate fitting formula ob-

Once immersed and withdrawn from the water, the stabiltained in a similar fashion to Eq10) turns out to be(for
ity limit given originally by Eq. (10) will no longer apply A e[100,10000)
due to the additional thin water film on the surface of the wet
solid. Depending on film thickness, the operative Hamaker
constant for this four-layer system may be quite different. If
thick enough, the appropriate Hamaker constant would be
that for the water-air-water configuration. This is generallyWith
the most attractive case of any triple layer system involving
water and an intervening air mediur@]. With an increased logy o\
Hamaker constant, the wet solid would not be able to come u~0.305A O.OSQW.
as close to the water surface as when dry, all other things G10h
being equal.

The limiting height formula, Eq(10), based on the geo- Again, the fitting agrees extremely well with the calculated
metric assumption of a paraboloid solid cylinder, has widedimiting approach distances; a relative error of less than
applicability than first supposed. By invoking the so-called1.0% for A\=100 m !, often better. Thus, given the maxi-
Derjaguin approximatiofl2], applicable to short range sur- mum height of an isolated sessile drop above a fixed refer-
face forces, the limiting height formula, E¢LO), could be  ence levelsay supporting substratm a typical atomic force
used with any smooth convex macroscopic body providednicroscope experiment, Eql1) can be used to determine
that the splay constantbe chosen appropriate to the solid’s the minimum possible substrate-colloidal particle separation.
mean curvature at the point of closest approdely., a So, how closely can a solid approach an air-water surface
sphere against a flat surface without being wet? Equatior(¢0) and(11) answer this ques-

Even with the Derjaguin approximation use of Efj0) is  tion by allowing one to calculate in ideal situations thie-
valid for macroscopic solids only. For specialized applica-soluteminimum height one can lower an object.

ZpO,min~ 10~ 6.434]}\—0.2579— 0'0071'09-0)‘AM m, (11)
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