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How closely can a solid approach an air-water surface without becoming wet?
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Through a study of the van der Waals interaction between a solid and an air-water interface, we investigate
the practical and fundamental problem of the limiting height at which an object can approach a free surface. A
numerical study of the interface shape reveals dependencies governed by two disparate length scales associated
with the relative strengths of the van der Waals and bouyancy forces, to surface tension. A study of the limits
of solvability of the governing equation has led to the principal result: a closed-form expression for the
absolute limiting height to which an object can be lowered to the air-water interface. The formula depends
explicitly and only on the Hamaker constant of the van der Waals force and the geometry of the solid.
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Imagine a child playing beside a pool of water, testing
see how close he can place his finger to the water surface
is instinctively aware that he cannot come too close, for
surface will spontaneously jump to meet his approaching
ger. In laboratory studies, researchers use the sensitive
helmy plate technique to measure surface properties of
pure air-water interface, or properties of an air-water int
face containing a precise selection of surface active m
ecules@1,2#. The experiment involves the edge-on immersi
of a metal plate, suspended by a fine wire from a fo
sensor, into the water. In doing so, the researcher not
that no matter how slowly and carefully she lowers the pl
toward the water surface, it does not meet a placid horizo
surface.

In both instances the water surface does not remain
during the object’s descent. Instead, being fluid and he
deformable, the interface responds to the presence of a
body. Invariably, the water surface becomes subject to
induced stress—a surface force. In the given solid-air-water
system, the imposed stress, a van der Waals interactio
attractive depending explicitly on a parameterA, called the
Hamaker constant, and the locations of the two surfaces.
van der Waals attraction causes the water surface to bulg
the direction of the solid. The extent to which it bulges d
pends on separation. A limiting, stable bulge correspond
to a limiting approach distance is inevitable.

Appearing now for the first time, to our knowledge, a
explicit formulas for the limiting height a solid can be low
ered toward the air-water surface. Exact calculations of l
iting stable water surface profiles are summarized in sim
formulas involving elementary functions. The formulas a
applicable to a wide range of macroscopic objects and ca
utilized by experimentalists and laymen alike. These res
are based on accepted approaches already adopted in re
studies@3–8#.

To understand what happens at and to the water surfac
a solid is lowered toward the interface, we perform a th
retical study by modeling the object as a smooth body
cylindrical symmetry. Specifically, the solid is represented
a cylindrical coordinate pair„r ,zp(r )… wherezp is a smooth
function. The corresponding air-water interface is rep
sented by the coordinate pair„r ,z(r )…, in which the function
z5z(r ) must be determined.
1063-651X/2003/68~5!/052601~4!/$20.00 68 0526
He
e
-
il-

he
-
l-

e
es
e
al

at
e
lid
n

is

he
in

-
g

-
le

be
ts
ted

as
-
f

y

-

For simplicity the solid body considered is a cylindric
paraboloid whose profile in vertical cross-section is d
scribed by the functionzp(r )5zp01lr p

2 . The valuezp0 de-
notes the lowest-most point of the paraboloid cylinder, wh
the shape of the body is governed by thesplayparameterl,
r p5r p(r ) where r is the sole independent coordinate va
able. Typicalzp0 values of relevance are of the order of a fe
hundred to a few thousand nanometers, approxima
10 000–100 000 times smaller than the horizontal scale.
varying l, which plays a central role in the forthcomin
analysis, we can effectively model any shape of parab
solid from a planar interface~l→0! to a vertical line~l→`!.
The larger the value ofl, the sharper or more needlelike th
solid is.

The van der Waals surface energy,

s„r ,z~r !,zp~r !…52
A

2D„r ,z~r !,zp~r !…2
, ~1!

resulting from a summation of intermolecular interactio
depends explicitly on the locations of both surfaces throu
the distance functionD„r ,z(r ),zp(r )…, connecting points
on the two surfaces by the shortest line segment~see Fig. 1!.
The Hamaker constantA is a measure of the strength o
the intermolecular interactions, and thus a function
the three materials involved@9#. In all s is a function of
the paraboloid shape and material properties, i.e.,s
5s„r ,z(r );A,zp0 ,l…. WIth the fluid media presumed of in
finite depth, the complication of involving similar interac
tions between either the fluid surface or the paraboloid
an underlying solid substrate@5# can be avoided.

The shape of the water surface,„r ,z(r )…, is determined
via an Euler-Lagrange minimization of the total free ener
of the system@11,8#. The Euler-Lagrange equation satisfie
by z(r ) is @8#

d

dr H rzr~r !

W~r !
@g1s~r ,z,zp!#J 5rW~r !sz~r ,z,zp!1rGz~r !.

~2!

Here, partial derivatives with respect to independent va
ablesr andz are denoted by subscripts;W(r )5A11zr

2 is an
area scaling factor; andG5Drg is the product of the density
©2003 The American Physical Society01-1
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difference between water and air, multiplied by the gravi
tional acceleration. The right-hand side of Eq.~2! contains a
surface term associated with the induced van der Waals
face stress and a body force term arising from the grav
tional contribution. These act in opposition. The former a
to lift the water surface above its neutral position (z50) and
is countered by the latter force, which is proportional to t
relative mass of water raised. On the left-hand side of Eq.~2!
appears a surface energyg1s, which measures the surface
ability to reduce the extent of deformation. Sinces is nega-
tive this ability is diminished compared to the bare surfa
measured by the air-water surface tensiong.

Two principal length scales appear in this problem: o
associated with the relative strength of the gravitational fo
to surface tension,l G5Ag/G, the capillary length, and one
l V , a complex function ofzp0 , l, as well as a length scal
associated with the relative strength of the van der Wa
stress to surface tension,l A5AA/g. Not surprisingly, the
existence of these two length scales leads to profile sh
which differ in scale in the two orthogonal directions.

Full numerical solution of the Euler-Lagrange equatio
Eq. ~2!, is achieved self-consistently and involves a match
of near- and far-field solutions. For details and complem
tary results see Ref.@10#.

Solutions of Eq.~2! for a range of parameter values a
typically represented by the profile in Fig. 1 which highligh
the disparity between the vertical scale,; l V , and the hori-
zontal scale,; l G . The figure includes both a calculated a
water interface profile~lower curve! and the solid paraboloid
~upper curve! responsible for the van der Waals surfa
force. A recurring feature of solutions to Eq.~2! is that de-
spite the local nature of the van der Waals stress (; l A)
the effect on the air-water interface extends some dista
away from the apex of the pin, although this would not ne
essarily be apparent to the naked eye as, in contrast,
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FIG. 1. Vertical cross section of a paraboloidzp(r )5zp0

1lr p(r )2, where zp051170 nm while splay parameterl
50.1 m21, and an air-water surface,z(r ). The water profile is a
solution to Eq.~2! for a van der Waals interaction between t
surfaces@10#. Physical parameters are:zp052020 nm, splay param
eter l50.1 m21, Dr50.9969 g m/cm3, g572.8 mN/m, and Ha-
maker constantA510220 J. The figure also indicates the distan
function D„r ,z(r ),zp(r )….
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change in the surface elevation is only of the order of h
dreds to at most thousands of nanometers. The prolon
influence on the profile follows the asymptotic behavior
the solution to Eq.~2!,

z~r !;C
exp~2r / l G!

Ar
as r→`, ~3!

valid far from the region of closest approach of the solid. T
rate at which the surface deformation diminishes depend
the decay lengthl G which, for the air-water interface, is
'0.27 cm. Consequently, a plane air-water interface wh
lateral extent exceeds 10l G or more can in this context be
considered effectively infinite.

A solution of Eq. ~2! is, however, not always possible
This fact plays a crucial role in determining how close
object can be placed to a water surface. If placed too clo
then certain conditions necessary to ensure a solution to
~2! will not be satisfied. The physical implication for an ob
ject too close to the water surface is that the water will pr
erably wet the solid. The solvability limit we speak of re
resents anabsolutelower bound for the distance at which th
solid can approach the air-water surface.

We have performed extensive numerical calculations
this limit of solvability, translated into a minimum heigh
zp0,min to which an object can be lowered toward a wa
surface. Obviously, this minimum height,zp0,min, is a func-
tion of both the Hamaker constantA and the paraboloid splay
parameter,l, as well as the surface tension of waterg and
the gravitational force constantG. As focus here is on the
air-water interface, no functional dependence on eitherg or
G can be deduced. In Fig. 2 we show examples of num
cally determined, minimum limiting values ofzp0. These
curves demonstrate quite a typical behavior as a function
either splay parameter or Hamaker constant, respectively
each of the figures in Fig. 2, we also show the correspond
maximum height of the air-water interface which occurs
the apex,z(0), i.e., directly under the paraboloid tip.

It seems reasonable that as the solid becomes broade
flatter ~decreasingl! the limiting height of approach~and
thus limiting separation between solid and fluid! increases,
since an increasing proportion of the solid comes within
van der Waals range of influence of the water interface. Si
larily, the dependence on Hamaker constant is as follows:
greater the strength of the interaction~increasingA), the
greater the minimum limiting height to which the body ca
come to the surface. Naturally, the limiting value of the pe
in the air-water profile,z(0), follows the trend in thezp0,min
values. Interestingly enough, there is a consistent facto
about 3 between corresponding limiting values ofzp0,min and
z(0).

For the numerical data presented in Fig. 2, showing
pendence ofzp0,min on l for a fixed Hamaker constant, w
obtain a least squares fit of the form

zp0,min~l;A52310219 J!510b(l) m ~4!

with exponent values b525.730620.2036 log10l
20.0345(log10l)2. On the other hand, with regard to th
1-2
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dependence onA for fixed splay parameter, a least-squar
analysis gives a best fit of the form

zp0,min~A;l51 m21!510aAm m, ~5!

wherea526.4343 andm50.3057. These power-law fits ar
motivated by plots of the data on a log-log scale. Clearly,
exponent in Eq.~4! is specific to the value ofA ~andG and
g!, while those in Eq.~5! are specific to the given value ofl
~andG andg!. On the other hand, Eqs.~4! and~5! represent
the same two-dimensional function ofA andl ~for fixed G
and g!. To determine this function, values of bothA and l
spanning two orders of magnitude or more were stud
Specifically, we considered the range of Hamaker const
from 10221 J to 5310219 J, and splay valuesl from
0.05 m21 to 10 m21. Values ofl less than 0.05 m21 were
difficult to implement. Forl,0.05 m21 numerical problems
arise because the paraboloid is too flat and an inherent
tem instability predominates. In the limitl→0 one has the
inherently unstable system of an infinite solid plane intera
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FIG. 2. Critical limiting heightszp0,min ~open diamonds! above a
plane water surface (z50) for a parabolic solid of cross section
zp(r )5zp01lr p(r )2, as a function of splay parameterl, ~upper
figure! and Hamaker constantA ~lower figure!. Solid triangles show
corresponding maximum heights of air-water interface. Solid cur
are least squares fits to thezp0,min values: zp0,min

51025.730620.2036 log10l20.0345(log10l)2
~least squares fit, upper figure!

and zp0,min51026.43433A0.3057 ~least squares fit, lower figure!.
Physical parameter values:Dr50.9969 gm/cm3, g572.8 mN/m,
and fixed Hamaker constantA52310219J ~upper figure! and fixed
splay parameterl51 m21 ~lower figure!.
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ing with an infinite fluid surface@3,5#. For l.10 m21 no
immediate numerical difficulty arises. However, numeric
calculations require a finer discretization of ther variable
with a consequent increase in computation time. In contr
no difficulty appears in the case of smaller values ofA.
While limits expected forA values are larger than those co
sidered here, such are not typically found in practice.

From the assumption that the parameter dependenc
zp0,min is of form ~5! and by varyinglP@0.05,10#, we have
deduced that

a526.434120.2379 log10l20.0236~ log10l!2 ~6!

to a relative accuracy of 0.1%, while a more complex dep
dence on log10l applies for the second exponent. To thi
order we find the least-squares approximation

m50.305710.014 45 log10l20.004 385~ log10l!2

20.000 022 6~ log10l!31O„~ log10l!4
… ~7!

in which the O„(log10l)4
… term is positive and non-

negligible. Motivated by experience with a related syste
involving a smaller density difference@10#, we found that
Eq. ~7! could be rewritten approximately as

m'0.30571@12~3/10!log10l1~3/10!2~ log10l!2

2~3/10!3~ log10l!31•••#@0.01445 log10l21.3252

31023~ log10l!3# ~8!

in which we recognize the expression within the central
rentheses as the first few nontrivial terms of the binom
expansion for (11x)215(n50

` (21)nxn for uxu,1. Antici-
pating that successive terms continue to follow the binom
series the implied summation was performed to give,
u log10lu,10/3, the approximation

m'0.30571@0.144521.325231022~ log10l!2#
log10l

1013log10l
~9!

to the ‘‘exact’’ least-squares formula, Eq.~7!. Equation~9!
intrinsically possesses all orders of contributions of log10l
and thus better represents thel dependence.

Invoking Eq.~6! in Eq. ~5!, with m given by Eq.~9!, we
obtain the convenient, closed-form formula

zp0,min51026.4341l20.237920.0236 log10lAm m ~10!

for the critical minimum height of a macroscopic obje
above the air-water interface. This formula depends only
the type of material making up the solid~Hamaker constant!
and its geometrical curvature~splay parameter!.

Formula ~10! reproduces the numerically determine
zp0,min values over the givenAl-parameter space to an acc
racy of less than 2% relative error for the two lowestl val-
ues:l50.05 and 0.1 m21 and less than 0.5% relative erro
for the remainder. The error decreases asl increases up to
l510 m21.

s

1-3
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It is important to note that in Eq.~4!–~10! l andA must
be normalized with respect to the reference scalesl re f
51 m21 and Are f510221 J, respectively. Use of any othe
system of units will lead to error. The critical height e
pressed by Eq.~10! is given in meters.

Once immersed and withdrawn from the water, the sta
ity limit given originally by Eq. ~10! will no longer apply
due to the additional thin water film on the surface of the w
solid. Depending on film thickness, the operative Hama
constant for this four-layer system may be quite different
thick enough, the appropriate Hamaker constant would
that for the water-air-water configuration. This is genera
the most attractive case of any triple layer system involv
water and an intervening air medium@9#. With an increased
Hamaker constant, the wet solid would not be able to co
as close to the water surface as when dry, all other thi
being equal.

The limiting height formula, Eq.~10!, based on the geo
metric assumption of a paraboloid solid cylinder, has wid
applicability than first supposed. By invoking the so-call
Derjaguin approximation@12#, applicable to short range su
face forces, the limiting height formula, Eq.~10!, could be
used with any smooth convex macroscopic body provid
that the splay constantl be chosen appropriate to the solid
mean curvature at the point of closest approach~e.g., a
sphere against a flat surface!.

Even with the Derjaguin approximation use of Eq.~10! is
valid for macroscopic solids only. For specialized applic
s
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tions in experiments quantifying the mesoscopic interact
between microscopic or submacroscopic solids and var
fluid surfaces@13–22#, an accurate representation requir
fitting of exact numerical calculations in the rangel
5100–10 000 m21. Here, an accurate fitting formula ob
tained in a similar fashion to Eq.~10! turns out to be~for
lP@100,10 000#!

zp0,min'1026.4341l20.257920.0071log10lAm m, ~11!

with

m'0.305710.039
log10l

31 log10l
. ~12!

Again, the fitting agrees extremely well with the calculat
limiting approach distances; a relative error of less th
1.0% for l>100 m21, often better. Thus, given the max
mum height of an isolated sessile drop above a fixed re
ence level~say supporting substrate! in a typical atomic force
microscope experiment, Eq.~11! can be used to determin
the minimum possible substrate-colloidal particle separat

So, how closely can a solid approach an air-water surf
without being wet? Equations~10! and~11! answer this ques-
tion by allowing one to calculate in ideal situations theab-
soluteminimum height one can lower an object.
, J.
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